PassengerRunningForTrain http://localhost:8887/nbconvert/html/Python/Mechanics/PassengerRunn...

In [5]: import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline

from astropy import units as u

from astropy.io import ascii, fits

from astropy.table import 'l'able, Column, MaskedColumn, join, unique
from astropy.cosmology import WMAP9 as cosmo

from astropy.coordinates import SkyCoord

from scipy.io.idl import readsav
from scipy.stats import gaussian kde
from scipy.optimize import fsolve
from scipy import constants

In [6]: 22html

<style>
body {
font-family: "Comic Sans MS", cursive, sans-serif;
}
</style>

3) A passenger is running at her maximum velocity of 8 m/s to catch a train.
When she is a dis-tance d from the nearest entry to the train, the train starts
from rest with a constant acceleration a = 1.0 m/s2 away from her.

a) If d = 30 m and the passenger keeps running, will she be able to jump onto the train?

b) The critical separation distance is that at which the passenger can just catch the train. De-termine its value. What is
the speed of the train when the passenger catches it? What is the train’s average speed for the time interval from t =
0 until she catches it?

c With Python (or other plotting program), sketch the position function x(t) for the train, choosing x = 0 at t = 0. On
the same graph sketch x(t) for the passenger for various initial separa-tion distances d, including d = 30m and the
critical separation distance dc such that she just catches the train.

Answers: a) tcatch = 6 s or 10 s (explain each), b) dcritical = 32 M, VT catch = 8 m/s, vi =4 m/s

First just plot the situation where the passenger starts 30 m behind to tran to see if they're ever in the same positions

at the same time so the passenger can catch the train.

1 of4 8/31/2021, 4:14 PM

PassengerRunningForTrain

2 of 4

In [15]:

#Define the variables (floating point allows decimals)
#1lhe first lines that are commmented out allow live input of the initial positions.

#xpassenger(0 = float (input ('xpassenger0 = "))
xpassenger0 = +0.0
vpassenger0O = +8.0
apassenger0 = +0.0

#xtrain0 = float (input ('xtrain0 = "))
xtrain0 = +30.0
vtrain0 = +0.0
atrain0 = +1.0

#Set linear time steps from 0 to 15 seconds (default number of steps is 50)
time = np.linspace(0.,15.)

#Write the equations for the positions using the defined varialbes
xpassenger = xpassenger(+ vpassengerO*time + 0.5%*apassengerO*time**2
xtrain = xtrain0 + vtrainO*time + 0.5*atrainO*time**2

#Plot the positions with respect to time in blue and green
plt.rcParams["figure.figsize"] = [10,7]

plt.plot (time, xpassenger, 'b', time, xtrain, '

g')

#make the plots pretty

plt.title('Passenger Running for ‘lrain', fontsize=16)

plt.xlabel ("I'ime (s)', fontsize=14)

plt.ylabel ("Position (m)', fontsize=14)

plt.legend(["Passenger", "lrain"], loc ="upper left", fontsize=14)
plt.grid(True)

plt.show ()

Passenger Running for Train

10 1 — Passenger
— Train

120 1

100 1

Position (m)

20 1

0 2 4 6 8 10 12 14
Time (s)

Zoom in on the span including the two places where the curves intersect and the passenger and train are at the same
position. Confirm that they're at 6 s and 10 s as calculated.

8/31/2021, 4:14 PM

http://localhost:8887/nbconvert/html/Python/Mechanics/PassengerRunn...

PassengerRunningForTrain http://localhost:8887/nbconvert/html/Python/Mechanics/PassengerRunn...

In [16]: time = np.linspace(5.,11.)

xpassenger = xpassenger(0 + vpassengerO*time + 0.b5*apassengerO*time**2
xtrain = xtrainO + vtrainO*time + 0.5%atrainO*time**2

plt.rcParams["figure.figsize"] = [10,7]
plt.plot (time, xpassenger, 'b', time, xtrain, 'g')

plt.title('Passenger Running for 'lrain: Zoom', fontsize=16)
plt.xlabel ("I'ime (s)', fontsize=14)

plt.ylabel ("Position (m)', fontsize=14)

plt.legend(["Passenger", "lrain"], loc ="upper left", fontsize=14)
plt.grid(True)

plt.show ()

Passenger Running for Train: Zoom

90 1 — Passenger
— Train

70 1

Position (m)

5 6 7 8 9 10 1
Time (s)

Since the critical distance was calculated to be dcitical = 32 m, plot the curves for this as the initial distance from the

passenger to the train to confirm that it results in a single intersection (actually, the curves are tangent, but both at
the same distance at the same time).

3of4 8/31/2021, 4:14 PM

PassengerRunningForTrain http://localhost:8887/nbconvert/html/Python/Mechanics/PassengerRunn...

Lo: [Li6]: #Define the critical distance
xtraincritical = +32.0
vtrain0 = +0.0
atrain0 = +1.0
time = np.linspace(5.,11.)
xpassenger = xpassenger(0 + vpassengerO*time + 0.b5*apassengerO*time**2
#change the initial position of the train
xtrain = xtraincritical + vtrainO*time + 0.5%*atrainO*time**2
plt.rcParams["figure.figsize"] = [10,7]
plt.plot (time, xpassenger, 'b', time, xtrain, 'g')
plt.title('Passenger Running for 'lrain at the Critical Distance', fontsize=16)
plt.xlabel ("I'ime (s)', fontsize=14)
plt.ylabel ('Position (m)', fontsize=14)
plt.legend(["Passenger", "lrain"], loc ="upper left", fontsize=14)
plt.grid(True)
plt.show ()
Passenger Running for Train at the Critical Distance
— Passenger
01— Train
m B
£]
c
o
=
7]
[o]
o @
50 B
40 A
5 6 7 8 9 10 1
Time (s)
Thus the passenger has one opportunity to catch the train when she starts deyitical = 32 m behind it. Now confirm the
speed of the train ... the passenger's speed is a constant 8 m/s. Since the curves are parallel at the point where they
overlap, the train should be at the same speed.

In [1:

4 of 4 8/31/2021, 4:14 PM

